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An A Posteriori Error Reduction Scheme for
the Three-Dimensional Finite Element
Solution of Maxwell’s Equations
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Abstract— The accuracy of the finite element method (FEM)
depends on the properties of the mesh which covers the problem
geometry. The accuracy can usually be improved by increasing
the element density in the mesh or the order of the shape
functions in the elements at the expense of a significant increase
in computation time. Instead, in this paper an a posteriori error
reduction scheme is applied to improve the accuracy in the
solution of three-dimensional electromagnetic boundary value
problems. In this scheme, first the FEM solution is generated
by the use of lower-order shape functions. Then the numerical
error is expressed in terms of higher-order shape functions
and calculated on an element-by-element basis from information
derived from the FEM solution. Finally, this error is added to
the FEM solution to improve its accuracy. The degree of error
reduction which is achieved with the application of this scheme
is demonstrated by means of several simple electromagnetic
boundary value problems.

1. INTRODUCTION

HE ACCURACY of the finile element method (FEM)

depends upon the gridding scheme used to mesh the
geometry. The solution becomes more accurate when either
the mesh becomes finer or the order of the shape function is
increased, but in exchange there is a corresponding increase
in computation time. For the user it is important to find the
optimum mesh density which produces both an accurate and
efficient solution. One area of research that is very active is
adaptive mesh refinement methods [1]-[5]. In these methods,
the problem is solved multiple times where after each solution,
mesh refinement is carried out in selective regions of the mesh.
The selective regions are chosen from an a posteriori analysis
of the previous solution to determine the regions of the mesh
with the greatest error. In this way, one can increase the mesh
density or the order of the shape functions only in those regions
where a large error is predicted. Thus, the discretization of
an arbitrary geometry is automatically done to some error
criterion that the user specifies.

The ideas in adaptive mesh refinement can also be used
to improve the FEM solution without having to recompute a
global matrix solution. Kelly [6] used a posteriori information
to find an improved solution which minimizes the global
energy norm of the error and at the same time satisfies certain
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physical laws. The solution is computed in an element-by-
element manner so that the computation time of the improved
solution is small compared to the one of the original solution.
He applies his method to Laplace’s equation in one and two
dimensions.

Using Kelly’s work as a basis, Ohtsubo and Kitamura [7]
developed another error reduction scheme for two-dimensional
elastic problems. In this scheme, they generated finite element
equations for the error in terms of the a posteriori information.
They then decoupled the finite element equations so that the
elements are independent of one another by enforcing several
physical constraints on the solution. The resulting error was
added back into the original solution to create an improved
solution.

In this paper, we are extending the work of Ohtsubo and
Kitamura to solve three-dimensional electromagnetic wave
problems. In our analysis, we plan to express the etror in
terms of two a posteriori pararaeters. The first parameter is
an error residual which is generated from the fact that the
numerical solution does not satisfy the wave equation. The
second parameter measures the discontinuity of the tangential
fields at inter-element surfaces in the numerical solution.
We can compute an error from these two parameters by
following a systematic procedure similar to [7]. To validate
this method, several simple rectangular waveguide geometries
are considered.

II. FORMULATION

Let us consider a volumetric, source-free region of space
denoted by €2, where € can be divided into finite elements
Q,, (Fig. 1). From Maxwell’s equations, we can show that
the electric field satisfies the differential equation

Vx(—,l——VXE)—l-jwe*E:O (z,9,2) € (1)
Jwp

where the exp (jwt) time harmonic variation has been sup-
pressed and €* = € — jo/w. The finite element discretization
of the associated variational expression for (1) is known to
produce spurious solutions. However, an alternative differen-
tial equation based on the vector Helmholtz equation has been
used to produce non-spurious solutions [8]. The differential
equation is given by

Vx(,—l—VXE>+jwe*E——V(_ *V.(E*E)>=0
jwp Jwpe

(z,4.2) €2 (2)
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Fig. 1. Problem geometry.

The corresponding variational expression over the entire grid is

2/
“E)YV - $,)dv

B Z//gmjwué
€))

where 0§12, is the surface enclosing element m. The continuity
of tangential E and normal D is enforced directly at the nodes.
Assuming that there are no surface currents or charges at the
inter-element boundaries, the surface integral in (3) vanishes
everywhere except at the boundary of the mesh.

We can now choose a set of shape functions to approximate
the electric field and generate a numerical solution using FEM.
Unfortunately, because the shape functions are only finite
order polynomials with C° continuity (Function is continuous,
but first derivative is discontinuous.), it produces a numerical
solution which only approximates the real solution. Let the
finite element approximation for the electric field be denoted
by E. Then E (in element £2,,,) satisfies the equation,

! v.(e*E)) — 7

Jwpe®
(T, 9, 2) € Q. (D)

L (v B (V x &) + jwe'E - §,
Jwp

(E)Gi -n+ (A x H) - §;dS

1 N ~
V x (,—V X E) + jwe*E — V(
Jwp

where 7, is the residual due to the error in the FEM solution.
A weak form of (4), which is valid over the entire grid, is

2Hh

joper (E*E)(v ¢ =

- Z//da G ¥ (B}
(5)

where H is the numerical solution for the magnetic field and
is given by

——(V x E)-(

(V X &) + jwe*E - §;
jwp

(7o - $2) dv

A)+ (A x H) - ¢ ds

V x E=—jwuH (6)

Unlike the exact magnetic field in (3), H is discontinuous at
inter-element boundaries, thereby generating fictitious surface
currents between the elements. In addition, a fictitious charge,
which is given by V- ¢F, may be present at the inter-element
boundary.

By summing over all the elements in the grid, we obtain
the following equation from (5):

/// (Vx E)- (VX &)+ jwe'E - §,
Jwp
7w,u,€ (EB)(V - ¢) — (7 i) dv

m,k e

where 08, is the surface joining elements m and k. Note
that the residual 7 has no subscript since it is associated with
the entire mesh rather than a single element in the mesh. In
(7), we have excluded the term associated with the boundary
conditions on the mesh. This term will be considered later.

The sum on the right hand side of (7) is evaluated over
all the inter-element boundary surfaces in the mesh. The term
Pmik, Which represents the fictitious currents and charges at the
inter-element boundaries, is given by

1

ﬁmk =—WV- (emEm)ﬁm + o X f{m
JWemlhm
1 PN . -
b V- (erEp)ny — i X H,  (8)
JWEL Lk

The subscripts, m and k, on the right hand side of the equation
indicate the element in which the vector quantities and material
parameters are evaluated.

In this paper, we seek to obtain an estimate for the error
in the finite element solution. It is obvious from the previous
equations that the non-zero values of 7 and f,,; are due to the
errors in the numerical solution; therefore, an equation for the
error can be written in terms of these two variables. The error
€ due to the finite element approximation is defined to be

e=FE-E )

An expression for this error can be found by subtracting (7)
from (3) to obtain

///——(wa (V X §) + jwe'e- &,

PR G ORI G AL

=S [ s dias
m,k ank

The terms, 7 and Py,k, are known a posteriori from the original
FEM solution for the electric fields. Thus, we can solve for
the error by applying FEM to (10). The same shape functions
that are used to approximate the fields in (5) can also be
used to approximate the error in (10). However, it has been
found [6] that the dominant term in the error is associated
with the polynomials which are one order higher than those
used to approximate the fields. Therefore, a higher order

(10)
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Fig. 2. A side view of elements £, and €, is shown. The length ., is traced from the centroid of element ,, to the centroid of surface 8.
Likewise, [}, is traced from the centroid of element Q2 to the centroid of surface 8.

shape function is used to approximate the error. In our case,
we use an 8-node isoparametric hexahedron to represent the
fields and a 20-node isoparametric hexahedron to represent
the error. The solution of (10) with 20-node hexahedra is
computationally expensive because the term g, couples the
finite element equations between adjacent elements. In fact,
the error computation would require as much time as the field
calculation in which 20-node hexahedra are used as the shape
functions. Based on this observation, a direct solution of (10)
is not efficient for estimating the error in the FEM solution.

In order to make the error calculation efficient, the error in
each element must be decoupled from the other elements. To
accomplish this decoupling, we must remove the constraint
that the fields be continuous at the nodes. In addition, the
variable j,,, must be decomposed into two independent terms,
Fm and pj, where the first term is associated with the mth
element and the second is associated with the kth element.
The resulting equation for the error in element €2, is

//./Qmjw—l_u(vXa'(VX$i)+jW€*€‘$i

i) = (P - i) dv
L

Since the elements are decoupled, the error in each element is
found by solving an N, x N, matrix equation (from (11))
where N. is the number of unknowns associated with the
element. For the 20-node hexahedron, N, = 60.

The manner in which we divide g, into g, and gj is
important in determining how accurately the error is approx-
imated. Unfortunately, there does not seem to be a way to
split Py such that the accuracy of the error is optimized.
In our case, we choose a simple splitting scheme proposed
by Ohtsubo and Kitamura [7]. The division is based on the
relative sizes of neighboring elements and is given by

lm - . - lk
lm+lkﬂmk, Pk—l

m T lk
where [,, and [l are the distances from the centroid of
the surface 9,1 to the ceniroids of the elements m and
k, respectively (see Fig. 2). Although this splitting scheme

n

P = Pmk 12)

does not guarantee accurate error estimates, it provides us
with a systematic method of decomposing 7. This splitting
scheme constitutes only the first part of the complete approach
developed by Ohtsubo and Kitamura, since it does not involve
any explicit equilibrization of the discontinuities of the in-
terelement boundaries of a particular element. To demonstrate
the capabilities of the scheme, we will show numerical results
for several test cases in the next section.

At this point, it should be noted that (11) does not properly
account for the surfaces at the boundary of the mesh since 7,
is only defined at inter-element boundaries. To find the error in
the elements which border the mesh boundary, we must prop-
erly incorporate the boundary condition into the equation. For
this paper, we consider the Dirichlet and Neumann boundary
conditions. For elements on the boundary, (11) is modified to
include a surface integral on the mesh boundary and is given

///Q (VXD (Vx )+ juc'd- 6

) (Tom - $z)dv

// P B+ // Fmo-$.dS  (13)
oQ,, 8Qmo

where 9€,, represents the surfaces of the element which are
not on the boundary of the mesh, and 02,0 represents the
surfaces of the element which are. The term g,,q is defined
to be

—

Pmo = x (H — H) (14)
Neumann boundary conditions are very easy to implement
because Ax H is given on the mesh boundary. For the Dirichlet
boundary condition, we set the exact values of E at the nodes
on the outer boundary to generate the numerical field solution;
therefore, there is no error in the numerical solution at the
boundary of the mesh. When this condition is enforced on (13),
it becomes unnecessary to calculate g,,,¢ on the boundary. It
should be noted that for the analysis of the H-field, one can use
the dual form of equation (13) to determine the error. In that
case, the perfectly conducting boundaries become Neumann
rather than Dirichlet boundary conditions.
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The error € can now be calculated in an element-by-element
manner and added to £ to improve the overall accuracy of the
numerical solution. It is not necessary to apply this scheme
to every element. In many instances, the solution is only
important in a small fraction of the elements. For example,
in radar cross section (RCS) calculations, we require the
field solutions only in the elements which border the outer
boundary. Similarly, for scattering matrix calculations, the
only field information required is at the input and output planes
of the geometry under consideration.

A similar derivation can be performed for the H field in the
case where the unknowns in the FEM solution are the magnetc
fields at the nodes rather than the electric fields.

III. NUMERICAL EFFICIENCY

In order to demonstrate the numerical efficiency of the error
reduction approach, one can perform a complexity analysis of
asymptotic nature on a cubic problem domain. It is known
that for a banded matrix, the elimination (LU-decomposition)
of the global FEM matrix requires a number of operations
which is proportional to W?M, where W represents the
bandwidth of the matrix, and M denotes the total number of
unknowns in the cubic problem domain. Since 8-node, first-
order hexahedral elements are employed in the computation of
the original FEM solutions, it is deduced that the bandwidth
W of the global FEM matrix is given by W = (3N)? (with
3 unknowns per node). With the total nurmber of unknowns in
the cubic problem domain being given by M = (3N)3, where
N denotes the average number of nodes along one direction
in the cubic problem domain, one finds that the process of
elimination of the FEM global matrix requires 81 N4 x 27N3 =
2187N7 operations. The solution (backsubstitution) process
is known to involve a total number of operations which is
proportional to WM. Thus, it is seen that the solution process
requires 9N2 x 27N = 243N® operations, which becomes
a small number in comparison to the number of operations
in the elimination process for realistic problems with a very
large parameter V.

In the element-by-element a posteriori calculation of the
numerical error, however, 20-node, second-order hexahedral
elements are used. Therefore, since the total number of ele-
ments is given by (N — 1) in the cubic problem domain, the
total number of operations associated with the matrix solution
in the error reduction process (with 3 unknowns per node) is
given by 603(IN — 1)3 = 216,000(N — 1)3, which is clearly
a neglible number (of order N3) in comparison to the number
of operations which are involved in the elimination process of
the global matrix (of order N7) for realistic problems with
large N. For problems in which one is mainly interested
in the reduction of error in those elements which lie along
the surface of the cubic problem domain (such as RCS
calculation problems), the total number of operations that is
required in the error reduction process is further reduced to
6 X 603(N — 1)* = 1,296,000(N — 1)? (of order N?). The
error reduction scheme is therefore computationally much less
expensive than a conventional FEM solution which is applied
to the same problem domain.

IV. NUMERICAL RESULTS

To demonstrate the wvalidity of the method, a three-
dimensional finite element program has been written. A frontal
scheme [9] is used to solve the sparse matrix equation for the
fields. In this paper, we present the results of the FEM field
calculations and the corresponding error reduction procedures
for a propagating T F1y mode in three rectangular waveguide
geometries: an infinite waveguide, a waveguide terminated by
a perfect electric conductor, and one terminated by a perfect
magnetic conductor. We also present the results of the error
reduction scheme when applied to a boundary value problem
(Neumann boundary condition specified) which contains a
spherical perfectly conducting object. These simple geometries
are chosen because the boundary conditions in all four cases
are known. In addition, it is easier to analyze the effectiveness
of the method on simpler geometries.

To measure the error reduction, we compare the y com-
ponents of the original FEM solution (Ey) and the improved
solution (E‘y + e,) to the y component of the exact solution
(Ly). The error percentages associated with the original and
improved solutions can be found in terms of an energy norm
from the equations,

= 1/2
epy = [HIQIE?’ By d”} % 100%  (I5)

f[fQ|Ey|2 dv

.ffo|Ey|2dU

where ep; and epy are the error percentages for the original
FEM solution and the improved solution, respectively. For the
fourth problem, in which the dual H -formulation of the error
reduction scheme is used, we compare the y and z components
of the original FEM solution (H) and the improved solution
ﬁ_'—i— F to the corresponding components of the exact solution
(H).

- 5 1/2
epy = [fffﬂlEy By — o] dv} x 100%  (16)

A. Infinite Rectangular Waveguide

Let us consider a rectangular waveguide (infinite in z
direction) of width 0.6 (along « direction) and height 0.2667 A
(along y direction) where A is the free space wavelength. The
walls of the waveguide are assumed to be perfectly conducting.
The problem domain is defined by the walls of the waveguide
and two fictitious surfaces located at 2 = —1.2)X and z = O
(referred to as input and output surfaces, respectively). The
geometry is shown in Fig. 3.

Because the analytical solution is known for this case, the
boundary conditions can easily be found for the problem
domain. At the side walls of the waveguide, we can apply the
appropriate Dirichlet or Neumann boundary conditions for a
T F1o mode. At the two fictitious surfaces, the exact Neumann
boundary condition is specified.

Four different mesh densities are chosen to test the effec-
tiveness of the a posteriori error reduction scheme on the
above geometry. The four meshes are made up of 72, 144,
240, and 360 elements. The corresponding number of nodes
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Fig. 3. A 1.2X section of an infinite rectangular waveguide of width 0.6

and height 0.2667A.

TABLE I
A TABULATION OF THE ERROR PERCENTATIONS FOR THE THREE WAVEGUIDE
ExaMPLES. CASE 1 1S AN INFINITE WAVEGUIDE; CASE 2 IS A WAVEGUIDE
TERMINATED BY A PERFECT ELECTRIC CONDUCTOR; CASE 3 Is
A WAVEGUIDE TERMINATED BY A PERFECT MAGNETIC CONDUCTOR

Waveguide | Number of | ep; | epo
Example | Elements| (%) | (%)
Case 1 72414257

1441154 9.9
240 83| 5.3
360| 34| 2.9
Case 2 72134.2(31.3
1441150 | 14.7
240 85| 86
360| 5.5| 5.6
Case 3 72147.7|28.8
144 1 17.6|10.8
2401 9.5| 5.8
360, 6.0| 3.7

for 8-node hexahedral elements is 150, 274, 432, and 627,
while the number of nodes for 20-node hexahedral elements
is 505, 941, 1509, and 2209. The 8-node hexahedron mesh
is used to compute E, and the 20-node hexahedron mesh is
used to compute €'in an element-by-element manner. The error
percentages, ep; and epo are listed in Table I for all four
meshes under Case 1. From the results, it is evident that the
scheme produces significant error reduction.

To get a better idea of how the error is distributed along the
length of the waveguide, let us define two quantities,

Egifp1 = |By — By an

Egire = |Ey — (Ey +’ey)l (18)

In Fig. 4, we plot the normalized quantities Eq;yr1/ E* and
Eaif2/ E* as a function of z for the 360 element mesh, where
E* denotes the amplitude of the “incident” electric field in
the waveguide. The fields are evaluated at a fixed value of
z and y, corresponding to the point where F, is maximum
(the center of the waveguide cross section). The solution
is discontinuous at the inter-element boundaries because the
solution in any single element is decoupled from the other
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Fig. 4. Plotof Eg;ps1/ E'and Ey; g2/ E* at the center of the cross section
of the waveguide as a function of z for the infinite rectangular waveguide
(360 element case).
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Fig. 5. A 1.2X section of a semi-infinite rectangular waveguide of width
0.6\ and height 0.2667X, which is terminated at one end by either a perfect
electric conductor (PEC) or perfect magnetic conductor (PMC).

elements. Although we violate the continuity condition, the
error has been significantly reduced. The improved solution
has less error than the original solution except near the middle
of the waveguide, where the original solution has almost zero
error. It is also interesting to observe that the error reduction
at the input and output surfaces is not as effective. It seems
that the strict enforcement of the exact Neumann boundary
condition in the error reduction scheme has a negative impact;
therefore, it is best not to use the input and output surfaces for
any future calculations. Instead, the solutions in the adjacent
elements should be used whenever possible to calculate the
parameters of interest.

B. Rectangular Waveguide Terminated by a Perfect
Electric or Perfect Magnetic Conductor

Let us modify the geometry in the first example by ter-
minating the waveguide with a perfect electric conductor at
z = 0 (Fig. 5); therefore, a standing wave is set up inside
the guide when a TE1p mode is incident on the perfect
electric conductor. To reflect this change, we must impose
the homogeneous Dirichlet boundary condition at z = 0. At
the input surface, we still apply the exact Neumann boundary
condition. In Table I under Case 2, we present the error
percentages for this geometry using the four meshes described
in the first example. Unlike the previous case, there appears
to be very little error reduction when the a posteriori scheme
is applied. In fact, the error percentages actually increase.
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Fig. 6. Plotof Eg; 51 /E* and Ediffz/Ei at the center of the cross section
of the waveguide as a function of z for the rectangular waveguide terminated
by a perfect electric conductor (360 element case).
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Fig. 7. Plotof Eg; 71 /E’ and Edifo/Ei at the center of the cross section
of the waveguide as a function of z for the rectangular waveguide terminated
by a perfect magnetic conductor (360 element case).

In Fig. 6, we plot Eg;rp1/E* and Eg;zp2/E® at the center
of the waveguide cross section as a function of z for the 360
element mesh. Again, the plot clearly indicates that there is
little or no error reduction throughout the entire mesh. Since
the only difference between the first and second examples is
the imposition of a Dirichlet boundary condition at the perfect
electric conductor, we suspect that the Dirichlet boundary
condition may cause the failure in the error reduction scheme.
To test this hypothesis, we consider a third geometry in
which the perfect electric conductor is replaced by a perfect
magnetic conductor. In this instance, a homogeneous Neumann
boundary condition is applied at z = 0. The error percentages
for the four different meshes are shown in Table I under
Case 3. We observe that the error reduction for this case

'is very similar to the first case; therefore, we suggest that
Neumann boundary conditions be used whenever possible. For
example, the second case can be formulated in terms of the
magnetic field, so that all the boundary conditions are of the
Neumann type. The Dirichlet boundary condition results in
a zero error condition in the original FEM field solution at
the boundary in question, which in turn leads to an entirely

R=0.20785 A

R'=0.22863 A

X

Fig. 8. Geometry of the PEC sphere.
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Fig. 9. Plot of Hygsys1/HYmaz and Hyg, 5o/ Hymaz on the surface of
the PEC sphere as a function of angle.

different distribution of the error along the waveguide. The
Neumann boundary condition results in a build-up of the
error at that boundary, which implies an error distribution
that is more suitable for the application of the error reduction
scheme. Also, the Neumann boundary condition can be used
for boundary truncation techniques such as the unimoment and
bymoment methods [10], [11].

The error distribution at the center of the waveguide crossec-
tion as a function of z for the 360 element mesh is shown
in Fig. 7. We can see that the error reduction is greater at
the perfect magnetic conductor than at the input surface. This
observation implies that the homogeneous Neumann boundary
condition is more successfully incorporated into the error
reduction scheme than the exact Neumann boundary condi-
tion. The asymmetric distribution of the quantity Fg; s /Ei
along the z-direction in this particular numerical example, in
contrast to Eg;rp /El in the first numerical example, is a
consequence of the fact that the homogeneous and the exact
Neumann boundary conditions are placed at opposite ends of
the waveguide. '
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Fig. 10. Plot of Hza,551/H2zmax and Hzg 550/ Hzmax on the surface
of the PEC sphere as a function of angle.

C. Perfectly Conducting Sphere

In the last example, a perfect electric conducting (PEC)
sphere (Fig. 8) is illuminated by the fields produced from two
scalar potentials which are represented by the spherical vector
wave functions M- 11 and N 11 as defined by Stratton [12]. There
are two layers of elements between the conducting sphere and
the outer boundary of the mesh. The total number of elements
in the mesh is 192. In order to consider the PEC sphere with
Neumann boundary conditions, the H-fields are specified as
the FEM unknowns. The error is given by

Hyijp1 = |H — H| (19)

Hgyifpe = |H — (H + b)] (20)

The above two equations are used for both the y and z
components of H In Figs. 9 and 10, Hyg;rs and Hzg. gy
are plotted along the surface of the sphere as a function of the
angle. The terms H %, and H 2,4, represent the maximum
values of the exact field on the surface of the PEC sphere. We
see that the a posteriori solution is more accurate except near
the zero degree angle.

V. SUMMARY

An a posteriori error reduction scheme for the finite element
method has been applied to solve three dimensional elec-
tromagnetic boundary value problems. The scheme is based
upon the fact that the numerical solution does not satisfy
Maxwell’s equations exactly, producing a residual error term.
Furthermore, some of the tangential fields are discontinuous
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at inter-element boundaries. These two pieces of information
can be used to predict the error in the numerical solution in
an element-by-element manner. The predicted error is then
used to cancel the error in the numerical solution. The scheme
has been tested for three waveguide geometries. From the
numerical results, it is evident that there was significant
improvement in the solution.
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