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Abstract— The accuracy of the fiuite element method (FEM)
depends on the properties of the mesh which covers the problem
geometry. The accuracy can usually be improved by increasing

the element density in the mesh or the order of the shape

functions in the elements at the expense of a significant increase

in computation time. Instead, in thk paper an a posterior error

reduction scheme is applied to improve the accuracy in the

solution of three-dimensional electromagnetic boundary value
problems. In this scheme, first the FEM solution is generated

by the use of lower-order shape functions. Then the numerical

error is expressed in terms of higher-order shape functions
and calculated on an element-by-element basis from information

derived from the FEM solution. Finally, this error is added to
the FEM solution to improve its accuracy. The degree of error
reduction which is achieved with the application of thk scheme
is demonstrated by means of several simple electromagnetic

boundary value problems.

I. INTRODUCTION

T HE ACCURACY of the finite element method (FEM)

depends upon the gridding scheme used to mesh the

geomet~. The solution becomes more accurate when either

the mesh becomes finer or the order of the shape function is

increased, but in exchange there is a corresponding increase

in computation time. For the user it is important to find the

optimum mesh density which produces both an accurate and

efficient solution. One area of research that is very active is

adaptive mesh refinement methods [1 ]–[5]. In these methods,

the problem is solved multiple times where after each solution,

mesh refinement is carried out in selective regions of the mesh.

The selective regions are chosen from an a posteriori analysis

of the previous solution to determine the regions of the mesh

with the greatest error. In this way, one can increase the mesh

density or the order of the shape functions only in those regions

where a large error is predicted. Thus, the discretization of

an arbitrary geometry is automatically done to some error

criterion that the user specifies.

The ideas in adaptive mesh refinement can also be used

to improve the FEM solution without having to recompute a

global matrix solution. Kelly [6] used a posteriori information

to find an improved solution which minimizes the global

energy norm of the error and at the same time satisfies certain
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physical laws. The solution is computed in an element-by-

element manner so that the computation time of the improved

solution is small compared to the one of the original solution.

He applies his method to Laplace’s equation in one and two

dimensions.

Using Kelly’s work as a basis, Ohtsubo and Kitamura [7]

developed another error reduction scheme for two-dimensional

elastic problems. In this scheme, they generated finite element

equations for the error in terms of the a posterioti information.

They then decoupled the finite element equations so that the

elements are independent of one another by enforcing several

physical constraints on the solution. The resulting error was

added back into the original solution to create an improved

solution.

In this paper, we are extending the work of Ohtsubo and

Kitamura to solve three-dimensional electromagnetic wave

problems. In our analysis, we plan to express the error in

terms of two a posterior parameters. The first parameter is

an error residual which is generated from the fact that the

numerical solution does not satisfy the wave equation. The

second parameter measures the discontinuity of the tangential

fields at inter-element surfaces in the numerical solution.

We can compute an error from these two parameters by

following a systematic procedure similar to [7]. To validate

this method, several simple rectangular waveguide geometries

are considered.

II. FORMIJLATION

Let us consider a volumetric, source-free region of space

denoted by Q, where Q can be divided into finite elements

flm (Fig. 1). From Maxwell’s equations, we can show that

the electric field satisfies the differential equation

where the exp (-jut) time harmonic variation has been sup-

pressed and e“ = c – ja/w. The finite element discretization

of the associated variational expression for (1) is known to

produce spurious solutions. However, an alternative differen-

tial equation based on the vector Helmholtz equation has been

used to produce non-spurious solutions [8]. The differential

equation is given by

‘x (kvxz)+’w’”z”-v(d=v”(’”z’)=’
(z, y, z) e Q (2)
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Fig. 1. Problem geometry.

The corresponding variational expression over the entire grid is

(3)

where dfl~ is the surface enclosing element m. The continuity

of tangential ~ and normifl 8 is enforced directly at the nodes.

Assuming that there are no surface currents or charges at the

inter-element boundaries, the surface integral in (3) vanishes

everywhere except at the boundary of the mesh.

We can now choose a set of shape functions to approximate

the electric field and generate a numerical solution using FEM.

Unfortunately, because the shape functions are only finite

order polynomials with Co continuity (Function is continuous,

but first derivative is discontinuous.), it produces a numerical

solution which only approximates the real solution. Let the

finite element approximation for the electric field be denoted

by E. Then E (in element Qn) satisfies the equation,

‘x (&’xE)+’L’’*E”v(d=v”(&’E))“m

where 7sm is the residual clue to the error in the FEM solution.

A weak form of (4), which is valid over the entire grid, is

E/// * +(V x E)”(v x J8)+’jwc*E. J
m m.

1
+~ v . (C”q(v ~q7J– (Fm . (i&)dv

Jw@

—
- E/y _!_v. (,fi)(Ji.?i)+(?fi x H) .Jids

m 80,. Jww”

(5)

where H is the numerical solution for the magnetic field and

is given by

v x E = –jwpH (6)

Unlike the exact magnetic field in (3), H is discontinuous at

inter-element boundaries, thereby generating fictitious surface

currents between the elements. In addition, a fictitious charge,

which is given by V. cE, may be present at the inter-element

boundary.

By summing over all the elements in the grid, we obtain

the following equation from (5):

(7)

where dfl~~ is the surface joining elements m and k. Note

that the residual F has no subscript since it is associated with

the entire mesh rather than a single element in the mesh. In

(7), we have excluded the term associated with the boundary

conditions on the mesh. This term will be considered later.

The sum on the right hand side of (7) is evaluated over

all the inter-element boundary surfaces in the mesh. The term

~~k, which represents the fictitious currents and charges at the

inter-element boundaries, is given by

1
fink = . v . (Cmfim)fim + fim x Hm

Jwempm

The subscripts, m and k, on the right hand side of the equation

indicate the element in which the vector quantities and material

parameters are evaluated.

In this paper, we seek to obtain an estimate for the error

in the finite element solution. It is obvious from the previous

equations that the non-zero values of F and ~mk are due to the

errors in the numerical solution; therefore, am equation for the

error can be written in terms of these two variables. The error

7 due to the finite element approximation is defined to be

An expression for this error can be found by subtracting (7)

from (3) to obtain

(lo)

The terms, F’and ~mk, are known a posterior from the original

FEM solution for the electric fields. Thus, we can solve for

the error by applying FEM to (10). The same shape functions

that are used to approximate the fields in (5) can also be

used to approximate the error in (10). However, it has been

found [6] that the dominant term in the error is associated

with the polynomials which are one order higher than those

used to approximate the fields, Therefore, a higher order
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Fig.2. A side view of elements Qm and flk is shown. The length lm is traced from the centroid of element flm to the centroid of surface i3flmk.

Likewise, lk is traced from the centroid of element Ok to the centroid of surface ~f)mk

shape function is used to approximate the error. In our case,

we use an 8-node isoparametric hexahedron to represent the

fields and a 20-node isoparametric hexahedron to represent

the error. The solution of (10) with 20-node hexahedra is

computationally expensive because the term ~m~ couples the

finite element equations between adjacent elements. In fact,

the error computation would require as much time as the field

calculation in which 20-node hexahedra are used as the shape

functions. Based on this observation, a direct solution of (10)

is not efficient for estimating the error in the FEM solution.

In order to make the error calculation efficient, the error in

each element must be decoupled from the other elements. To

accomplish this decoupling, we must remove the constraint

that the fields be continuous at the nodes. In addition, the

variable ~mk must be decomposed into two independent terms,

$m and $k, where the first term is associated with the mth

element and the second is associated with the kth element.

The resulting equation for the error in element flm is

Ill + x Z’). (v x (JJ+jwt”?. ;i
ct. ~wP

1
+- V . (E*Z’)(V .Ji) – (Fm .Ji)ch

Jwpe”

——
//

/dm . ~i dS (11)
mm

Since the elements are decoupled, the error in each element is

found by solving an N. x N. matrix equation (from (11))

where N. is the number of unknowns associated with the

element. For the 20-node hexahedron, N. = 60.

The manner in which we divide ~~k into pm and 15’~is

important in determining how accurately the error is approx-

imated. Unfortunately, there does not seem to be a way to

split fimk such that the accuracy of the error is optimized.

In our case, we choose a simple splitting scheme proposed

by Ohtsubo and Kitamura [7]. The division is based on the

relative sizes of neighboring elements and is given by

1* - - lk -

‘m = lm+lkpmk; ‘k = lm+lkpmk
(12)

where lm and 1~ are the distances from the centroid of

the surface d~mk to the centroids of the elements m and

k, respectively (see Fig. 2). Although this splitting scheme

does not guarantee accurate error estimates, it provides us

with a systematic method of decomposing fimk. This splitting

scheme constitutes only the first part of the complete approach

developed by Ohtsubo and Kitamura, since it does not involve

any explicit equilibrization of the discontinuities of the in-

terelement boundaries of a particular element. To demonstrate

the capabilities of the scheme, we will show numerical results

for several test cases in the next section.

At this point, it should be noted that (11) does not properly

account for the surfaces at the boundary of the mesh since ~m

is only defined at inter-element boundaries. To find the error in

the elements which border the mesh boundary, we must prop-

erly incorporate the boundary condition into the equation. For

this paper, we consider the Dirichlet and Neumann boundary

conditions. For elements on the boundary, (11) is modified to

include a surface integral on the mesh boundary and is given

by

///
+V x q ~(v x JJ +juc”z.;i

n. @P

——
//.

an Al “ J +
//

~mo . ~, dS (13)
aQmo

where dfln represents the surfaces of the element which are

not on the boundary of the mesh, and tX2m0 represents the

surfaces of the element which are. The term @no is defined

to be

~m~=iix(~-fi) (14)

Neumann boundary conditions are very easy to implement

because ii x E is given on the mesh boundary. For the Dirichlet

boundary condition, we set the exact values of ~ at the nodes

on the outer boundary to generate the numerical field solution;

therefore, there is no error in the numerical solution at the
boundary of the mesh. When this condition is enforced on (13),

it becomes unnecessary to calculate @mo on the boundary. It

should be noted that for the analysis of the ~-field, one can use

the dual form of equation (13) to determine the error. In that

case, the perfectly conducting boundaries become Neumann

rather than Dirichlet boundary conditions.
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The error Z’can now be calculated in an element-by-element

manner and added to E to improve the overall accuracy of the

numerical solution. It is not necessary to apply this scheme

to every element. In many instances, the solution is only

important in a small fraction of the elements. For example,

in radar cross section (RCS) calculations, we require the

field solutions only in the elements which border the outer

boundary. Similarly, for scattering matrix calculations, the

only field information required is at the input and output planes

of the geometry under consideration.

A similar derivation can be performed for the E field in the

case where the unknowns in the FEM solution are the magnetc

fields at the nodes rather than the electric fields.

III. NUMERICAL EFFICIENCY

In order to demonstrate the numerical efficiency of the error

reduction approach, one can perform a complexity analysis of

asymptotic nature on a cubic problem domain. It is known

that for a banded matrix, the elimination (LU-decomposition)

of the global FEM matrix requires a number of operations

which is proportional to W2A4, where W represents the

bandwidth of the matrix, ~d Al denotes the total number of

unknowns in the cubic problem domain. Since 8-node, first-

order hexahedral elements are employed in the computation of

the original FEM solutions, it is deduced that the bandwidth

W of the global FEM matrix is given by W = (3N)2 (with

3 unknowns per node). With the total number of unknowns in

the cubic problem domain being given by Al = (3N) 3, where

N denotes the average number of nodes along one direction

in the cubic problem domain, one finds that the process of

elimination of the FEM global matrix requires 81N4 x 27N3 =
2187N7 operations. The solution (backsubstitution) process

k known to involve a total number of operations which is

proportional to WM. Thus, it is seen that the solution process

requires 9N2 x 27N3 = 243N5 operations, which becomes

a small number in comparison to the number of operations

in the elimination process for realistic problems with a very

large parameter N.

In the element-by-element a posterior calculation of the

numerical error, however, 20-node, second-order hexahedral

elements are used. Therefore, since the total number of ele-

ments is given by (N – 1)3 in the cubic problem domain, the

total number of operations associated with the matrix solution

in the error reduction process (with 3 unknowns per node) is

given by 603(N – 1)3 = 216, 000(N – 1)3, which is clearly

a neglible number (of order N3) in comparison to the number

of operations which are involved in the elimination process of

the global matrix (of order NT) for realistic problems with

large N. For problems in which one is mainly interested

in the reduction of error in those elements which lie along

the surface of the cubic problem domain (such as RCS

calculation problems), the total number of operations that is

required in the error reduction process is further reduced to

6 x 603(N – 1)2 = 1,296, 000(N – 1)2 (of order N2). The

error reduction scheme is therefore computationally much less

expensive than a conventional FEM solution which is applied

to the same problem domain.

IV. NUMERICAL RESULTS

To demonstrate the validity of the method, a three-

dimensional finite element program has been written. A frontal

scheme [9] is used to solve the sparse matrix equation for the

fields. In this paper, we present the results of the FEM field

calculations and the corresponding error reduction procedures

for a propagating T’EIo mode in three rectangular waveguide

geometries: an infinite waveguide, a waveguide terminated by

a perfect electric conductor, and one terminated by a perfect

magnetic conductor. We also present the results of the error

reduction scheme when applied to a boundary value problem

(Neumann boundary condition specified) which contains a

spherical perfectly conducting object. These simple geometries

are chosen because the boundary conditions in all four cases

are known. In addition. it is easier to analyze the effectiveness

of the method on simpler geometries.

To measure the error reduction, we compare the y com-

ponents of the original FEM solution (~v) and the improved

solution (~y + ev) to the y component of the exact solution

(-EY). The error percentages associated with the original and

improved solutions can be found in terms of an energy norm

from the equations,

[

Jf’op, - ti,l’ dv “2x loo%
epl =

.H’.L1% 12~~ 1
(15)

where epl and ep2 are the error percentages for the original

FEM solution and the improved solution, respectively. For the

fourth problem, in which the dual ~-formulation of the error

reduction scheme is used, we compare the y and z components

of the original FEM solution (~) and the improved solution

fi++ ~ to the corresponding components of the exact solution

(H),

A. In.ttite Rectangular Waveguide

Let us consider a rectangular waveguide (infinite in z

direction) of width 0.6A (along z: direction) and height 0.2667A

(along y direction) where ~ is the free space wavelength. The

walls of the waveguide are assumed to be perfectly conducting.

The problem domain is defined by the walls of the waveguide

and two fictitious surfaces located at z = —1.2A and z = O
(referred to as input and output surfaces, respectively). The

geometry is shown in Fig. 3.

Because the analytical solution is known for this case, the

boundary conditions can easily be found for the problem

domain. At the side walls of the waveguide, we can apply the

appropriate Dirichlet or Neumann boundary conditions for a

Z’EIO mode. At the two fictitious surfaces, the exact Neumann

boundary condition is specified.

Four different mesh densities are chosen to test the effec-

tiveness of the a posteriori error reduction scheme on the

above geometry. The four meshes are made up of 72, 144,

240, and 360 elements. The corresponding number of nodes
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Fig. 3. A 1.2A section of an infinite rectangular waveguide of width 0.6A
and height 0.2667A.

TABLE I

A TABULATION OFTHE ERROR PERCENTATIONSFORTHE THRSE WAVEGUtDE
EXAMPLES. CASE 1 IS AN INFtNtTE WAVEGUIOE; CASE 2 ISA WAVEGUIDE

Terminated BY A PERFECTELECTRIC CONDUCTOK CASE 3 IS

A WAVEGUIDE TERMINATED BY A PERFECTMAGNETIC CONDUCTOR

~Vaveguide

Example

Case 1

Case 2

Case 3

Number of

Elements

72

144

240

360

72

144

240

360

72

144

240

360

epl

(%)

41.4

15.4

8.3

3.4

34,2

15.0

8.5

5.5

47.7

17.6

9.5

6.0

for 8-node hexahedral elements is 150, 274,

ep~

(’%)
25.7

9.9

5.3

2.9

31.3

14.7

8.6

5.6

28.8

10.8

5.8

3.7

432, and 627,

while the number of nodes for 20-node hexahedral elements

is 505, 941, 1509, and 2209. The 8-node hexahedron mesh

is used to compute E, and the 20-node hexahedron mesh is

used to compute E’in an element-by-element manner. The error

percentages, epl and ep2 are listed in Table I for all four

meshes under Case 1. From the results, it is evident that the

scheme produces significant error reduction.

To get a better idea of how the error is distributed along the

length of the waveguide, let us define two quantities,

Edi~~l = IEY – @ (17)

13diff2 = IEV – (fig+ ew)j (18)

In Fig. 4, we plot the normalized quantities Ed;ffl /Ei and

Ediffz/Ei as a function of z for the 360 element mesh, where
Ei denotes the amplitude of the “incident” electric field in

the waveguide. The fields are evaluated at a fixed value of

z and y, corresponding to the point where Ey is maximum

(the center of the waveguide cross section). The solution

is discontinuous at the inter-element boundaries because the

solution in any single element is decoupled from the other

zfA

Fig. 4. Plot of ll~;ffl /13i and &;ffz /Ea at the centerof thecrosssection
of the waveguideas a function of z for the infinite rectangular waveguide
(360 element case).

/ \
z — ‘.

0.6 k ‘---:> PEC or PMC Surface

Fig. 5. A 1.2A section of a semi-infinite rectangular waveguide of width
0.6~ and height 0.2667~, which is terminated at one end by either a perfect
electric conductor (PEC) or perfect magnetic conductor (PMC).

elements. Although we violate the continuity condition, the

error has been significantly reduced. The improved solution

has less error than the original solution except near the middle

of the waveguide, where the original solution has almost zero

error. It is also interesting to observe that the error reduction

at the input and output surfaces is not as effective. It seems

that the strict enforcement of the exact Neumann boundary

condition in the error reduction scheme has a negative impact;

therefore, it is best not to use the input and output surfaces for

any future calculations. Instead, the solutions in the adjacent

elements should be used whenever possible to calculate the

parameters of interest.

B. Rectangular Waveguide Terminated by a Perfect

Electric or Perfect Magnetic Conductor

Let us modify the geometry in the first example by ter-

minating the waveguide with a perfect electric conductor at
~ = O (Fig. 5); therefore, a standing wave is set up inside

the guide when a T’1310 mode is incident on the perfect

electric conductor. To reflect this change, we must impose

the homogeneous Dirichlet boundary condition at z = O. At
the input surface, we still apply the exact Neumann boundaty

condition. In Table I under Case 2, we present the error

percentages for this geometry using the four meshes described

in the first example. Unlike the previous case, there appears

to be very little error reduction when the a posteriori scheme

is applied. In fact, the error percentages actually increase.
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z/A

Fig. 6. Plotof Ed, ffl/17’ and,t?diff2/~ atthecenter of thecross section

of the wavegnide as a function of z for the rectangular waveguide terminated
by a perfect electric conductor (360 element case).

o I

-1,2 -1 4.8 -0,6 -0.4 -0.2 0

z/A

Fig. 7. plot of Ed; ffl/lT and,EdZff2/Ez atthecenter of the cross section

of the waveguide as a function of z for the rectangular waveguide terminated
by a perfect magnetic conductor (360 element case).

In Fig. 6, we plot Bd~ffl/@ andEdaffz/Ei at the center

of the waveguide cross section as a function of z for the 360

element mesh. Again, the plot clearly indicates that there is

little or no error reduction throughout the entire mesh. Since

the only difference between the first and second examples is

the imposition of a Dirichlet boundary condition at the perfect

electric conductor, we suspect that the Dirichlet boundary

condition may cause the failure in the error reduction scheme.

To test this hypothesis, we consider a third geometry in
which ‘the perfect electric conductor is replaced by a perfect

magnetic conductor. In this instance, a homogeneous Neumann

boundary condition is applied at z = O. The error percentages

for the four different meshes are shown in Table I under

Case 3. We observe that the error reduction for this case

is very similar to the first case; therefore, we suggest that

Neumann boundary conditions be used whenever possible. For

example, the second case can be formulated in terms of the

magnetic field, so that all the boundary conditions are of the

Neumann type, The Dirichlet boundary condition results in

a zero error condition in the original FEM field solution at

the boundary in question, which in turn leads to an entirely

I
z

Fig. 8. Geometry of the PEC sphere.

1

0.8

0.6

0.4

0.2

0 lJlllll!llll,lllj
-180 -120 -60 0 60 120 180

Angle (Degr.)

Fig. 9. Plot of Hy&ff~ /HY~~z and Hyd, f f z /HY~~~ on the surface of

the PEC sphere as a function of angle.

different distribution of the error along the waveguide. The

Neumann boundary condition results in a build-up of the

error at that boundary, which implies an error distribution

that is more suitable for the application of the error reduction

scheme. Also, the Neumann boundary condition can be used

for boundary truncation techniques such as the unimoment and

bymoment methods [10], [1 1].

The error distribution at the center of the waveguide crossec-
tion as a function of z for the 360 element mesh is shown

in Fig. 7. We can see that the error reduction is greater at

the perfect magnetic conductor than at the input surface. This

observation implies that the homogeneous Neumann boundary

condition is more successfully incorporated into the error

reduction scheme than the exact Neumann boundary condi-

tion. The asymmetric distribution of the quantity f7di f f 1/E;

along the z-direction in this particular numerical example, in

contrast to Ed;ffl /Ei in the first numerical example, is a

consequence of the fact that the homogeneous and the exact

Neumann boundary conditions are placed at opposite ends of

the waveguide.
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— Hz_diffl/ Hz_max
------- Hz_diff2/Hz_max
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Fig. 10. Plot of iYzd,ffl /Hzm.. and ~z~,ffz/lY+ax on the surface

of the PEC sphere as a function of angle.

C. Pe@ectly Conducting Sphere

In the last example, a perfect electric conducting (PEC)

sphere (Fig. 8) is illuminated by the fields produced from two

scalar potentials which are represented by the spherical vector

wave functions fill and fil 1 as defined by Stratton [12]. There

are two layers of elements between the conducting sphere and

the outer boundary of the mesh. The total number of elements

in the mesh is 192. In order to consider the PEC sphere with

Neumann boundary conditions, the ~-fields are specified as

the FEM unknowns. The error is given by

II&ffl = Ill – RI (19)

(20)

The above two equations are used for both the y and z

components of H. In Figs. 9 and 10, Hydiff and H,zd,ff

are plotted along the surface of the sphere as a function of the

angle. The terms Hymaz and Hz~ax represent the maximum

values of the exact field on the surface of the PEC sphere. We

see that the a posterior solution is more accurate except near

the zero degree angle.

V. SUMMARY

An a posterior error reduction scheme for the finite element

method has been applied to solve three dimensional elec-

tromagnetic boundary value problems. The scheme is based

upon the fact that the numerical solution does not satisfy

Maxwell’s equations exactly, producing a residual error term.

Furthermore, some of the tangential fields are discontinuous

427

at inter-element boundaries. These two pieces of information

can be used to predict the error in the numerical solution in

an element-by-element manner. The predicted error is then

used to cancel the error in the numerical solution. The scheme

has been tested for three waveguide geometries. From the

numerical results, it is evident that there was significant

improvement in the solution.
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